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Usually, the temperature gradient in snow cover is many times over the critical value above which convective
motion of air confined in snow pores begins. These motions strongly affect the rate of heat and mass transfer
processes in the snow cover. Analytical formulas that express the dependence of the generalized heat-conduc-
tion and diffusion equations of steam in snow on the Peclet number are obtained. A reason has been eluci-
dated due to which, in most cases, the value of the diffusion coefficient of steam in snow cover is higher than
its value in air.

The heat-conduction and diffusion equations of steam are the most important parameters that determine the
thermophysical properties of snow; therefore, many works have been devoted to experimental determination (in both
laboratory and field conditions) of these coefficients [1, 2]. The obtained values of the coefficients are characterized by
rather wide scatter and depend on the type of snow, its density and granular structure, on the experimental conditions,
etc. The diffusion coefficient of steam has the largest scatter; the measured values of it lie within the limits (0.13–
1.1)⋅10−4 m2/sec [2] and in most cases they exceed the value of the diffusion coefficient of steam in air (D0.2⋅10−4

m2/sec). High values of the diffusion coefficient of steam in snow indicate the presence of intense moisture flow
within the thickness of the caked snow, which lead to substantial changes in the structure and thermophysical charac-
teristics of snow.

In the present paper, we try to unravel the mechanism of origination of these flows. It follows from the theo-
retical studies [3] that the air in the pores loses stability and convection begins at temperature gradients in the snow
cover that exceed some critical value γcr, determined as

γcr = 
νχsRa,min

′

βfgMH
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 , (1)

where β = 1/T, M = 1.8–2.2, and, Ra,min
′  ≈ 30 is the Rayleigh number for snow at which convective motion of air in

the snow cover begins.
To determine the permeability coefficient of snow we use the semi-empirical Kozeny formula [4]
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At typical values of the parameters χs = 4⋅10−7 m2/sec, σ = 3.6⋅10−8 m2 (d = 0.2 cm), f = 0.6, T = 260 K,
M = 2, ν = 0.15⋅10−4 m2/sec, and H = 0.5 m, formula (1) yields γcr C 0.5 deg/m. By the data of [3] real temperature
gradients greatly exceed γcr. Hence it follows that at a rather large thickness of the snow cover, convective cells with
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a linear size of about 2πH ⁄ kmax (kmax C 2.3–2.5 is the maximum value of the dimensionless wave number for the
basic level of air instability in the snow cover) appear in it.

Steady-state vertical air flows in the snow cover are described by the equation

V 
dV
dz

 = βgH (γ − γcr) − 
ν
σ

 V , (2)

where the z axis is directed vertically upward from the lower boundary of the snow cover.
Analysis of the solution of (2) which satisfies the condition V(0) = 0 shows that velocity V reaches a maxi-

mum value Vmax = 
βgσH

ν
(γ − γcr) at a distance of an order of several centimeters from the lower boundary of the

snow cover; then air ascends at constant velocity. Thus, we can approximately assume that at a certain distance from
the lower boundary the rate of filtration within the entire snow thickness is constant and equals

u = fV = 
fβgσH

ν
 (γ − γcr) . (3)

We can now present the equation of convective heat conduction in the snow cover as [3]

ρscs 
∂θ
∂t

 = λs∆θ − div (ρcpuθ) − L div (ρwu) + LD∆ρw . (4)

The third and fourth terms on the right-hand side of Eq. (4) describe the contribution of steam condensation
of ice crystals due to a decrease in temperature of the air mass ascending in the snow.

Proceeding from the Clapeyron–Clausius equation, the relation between ρw and θ can approximately be writ-
ten as

∇ρ w = 
Lρw0

RwT0
2
 ∇θ (5)

(∇  is the gradient operator and T0 = 273 K).
With account for (5), in the steady state the equation of heat conduction in the snow cover has the form
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If we denote the temperatures on the lower and upper boundaries of the snow cover by θ1 and θ2, solution
of Eq. (6) takes on the following form:

θ (z) = 

θ1 exp a − θ2 − (θ1 − θ2) exp 
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here
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a = 
ρcp

ρscs
 
fβgσHM

χsu

is the Peclet number. Hence we obtain
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where ∆θ = θ1 − θ2. In Eq. (7), the ratio ∆θ ⁄ H is the temperature gradient in the absence of convection in the snow
cover; thus, the multiplier at it shows by how many times the intensity of heat transfer due to air convection increases
compared to the same intensity due to molecular heat conduction. Thus, we can write
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(8)

At typical values of the parameters in (1) and an air density of ρ = 1.29 kg/m3, we obtain u = 5.54⋅10−5∆θ
m/sec and a = 0.45∆θ for the rate of filtration and the Peclet number, respectively. Hence it follows that in the range
∆θ C (5–10)oC the effective heat-conduction equation of the snow cover changes from λs to aλs.

In the steady-state processes, the equation of mass transfer in the snow cover takes on the form

u 
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d
2ρw
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2

 . (9)

The relation between the coefficient Ds and the coefficient of diffusion of steam in air D can be found from the fol-
lowing considerations. The volume of snow is pierced by multiple microchannels through which steam is seeping. The
relative cross-section area of these microchannels is

S = δ2
n

2 ⁄ 3 . (10)

On the other hand, since the coefficient of porosity of snow is expressed in terms of n and δ by the formula

f = nδ3
 , (11)

from equalities (10) and (11) we have S = f 2
 ⁄ 3.

Thus, the relative area of the cross section through which steam can diffuse is of about f 2
 ⁄ 3 and, conse-

quently,

Ds C f
 2 ⁄ 3D . (12)

Solution of Eq. (9), which satisfies the boundary conditions

ρw z=0 = ρw (θ1) ,   ρw z=H = ρw (θ2) ,

has a form similar to solution of Eq. (6). Then we obtain

dρw
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where

a1 = 
uH
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 ∆θ .

Hence, as earlier, we have for the effective coefficient of diffusion
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At typical values of the parameters that are involved in (13), a1 = 1.95∆θ; at H = 0.5 m and γ − γcr = 10
deg/m, a1 ≈ 10, which is 1.7-fold larger than a. It is seen from these estimates that convective motion of air in the
snow cover exerts a stronger effect on the processes of moisture transfer than on the processes of heat transfer.

Calculations show that at a pore diameter in the snow of d = 0.2, 0.15, and 0.1 cm the effective coefficient
of diffusion Deff is 1.4⋅10−4, 0.78⋅10−4, and 0.35⋅10−4 m2/sec, respectively. These values are in good agreement with
the experimental data of different authors that are given, e.g., in [1, 2]. Moreover, when a1 > 2 the coefficient Deff is
proportional to the temperature gradient within the snow thickness, which is also in agreement with the experimental
data of [1].

Thus, we can take it to be ascertained that the high values of the coefficient of diffusion of steam in the
snow cover compared to its value in air are stipulated by the existence of convective motion of air within the snow
thickness.

It follows from formulas (8) and (14) that as the Peclet numbers a and a1 increase, the gradients of tempera-
ture and humidity increase, going toward the boundary of the snow cover. Consequently, the processes of heat and
mass transfer in the presence of convection are more intense at this boundary.

It also follows from the calculations that, along with the coefficients of heat conduction and diffusion, the co-
efficient of snow permeability is the most important parameter that determines the processes of heat and moisture
transfer in the snow cover. Therefore, one of the problems of the physics of snow is to develop prompt methods of
determining it.

NOTATION

a, Peclet number; a1, Peclet number for mass transfer; cp, heat capacity of air at constant pressure, J/(kg⋅deg);
cs, heat capacity of snow, J/(kg⋅deg); D, coefficient of steam diffusion in air, m2/sec; Ds, coefficient of steam diffusion
in snow in the absence of convection, m2/sec; Deff, effective coefficient of steam diffusion in snow, m2/sec; d, mean
diameter of pores in snow, m; f, coefficient of snow porosity; g, free-fall acceleration, m2/sec; H, snow-cover thick-
ness, m; kmax, maximum value of the dimensionless wave number, m−1; L, specific heat of steam sublimation, J/kg;
M, numerical coefficient; n, number of pores per snow-volume unit, m−3; Rw, gas constant of steam, J/(kg⋅deg);
Ra,min

′ , minimum Rayleigh number for snow; S, relative area of pores in snow; T, absolute temperature; t, time, sec; u
and u, rate of filtration and its vector, m/sec; V, vertical component of air velocity in snow, m/sec; β, coefficient of
thermal expansion of air, deg−1; γ, temperature gradient in snow, deg/m; γcr, critical temperature gradient at which air
confined within the snow pores loses its stability, deg/m; δ, mean diameter of pores in snow, m; θs, temperature in
the snow cover, oC; θ1 and θ2, temperatures of the lower and upper boundaries of the snow cover, oC; χs, coefficient
of thermal diffusivity of snow in the absence of convection, m2/sec; λs, coefficient of thermal conductivity of snow in
the absence of convection, J/(m⋅sec⋅deg); λeff, effective coefficient of thermal conductivity of snow, J/(m⋅sec⋅deg); ν,
kinematic coefficient of viscosity of air, m2/sec; ρ, air density, kg/m3; ρs and ρi, density of snow and ice, respectively;
kg/m3; ρw, saturating density of steam over a plane surface of ice at a temperature of θs, kg/m3; ρw0, saturating den-
sity of steam over the ice surface at 0oC, kg/m3; σ, coefficient of snow permeability. Subscripts: s, snow; p, pressure;
eff, effective; max, maximum; min, minimum; cr, critical; w, steam; a, air, i, ice.
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